5,039 research outputs found

    Matrix Theory in a Constant C Field Background

    Full text link
    D0-branes moving in a constant antisymmetric C field are found to be described by quantum mechanics of the supersymmetric matrix model with a similarity transformation. Sometimes this similarity transformation is singular or ill-defined and cannot be ignored. As an example, when there are non-vanishing C_{-ij} components, we obtain the theory for Dp-branes which is effectively the noncommutative super Yang-Mills theory. We also briefly discuss the effects of other non-vanishing components such as C_{+ij} and C_{ijk}.Comment: harvmac, 17 pages, references adde

    Cationic Porphyrins with Large Side Arm Substituents as Resonance Light Scattering Ratiometric Probes for Specific Recognition of Nucleic Acid G-quadruplexes

    Get PDF
    Specific G-quadruplex-probing is crucial for both biological sciences and biosensing applications. Most reported probes are focused on fluorescent or colorimetric recognition of G-quadruplexes. Herein, for the first time, we reported a new specific G-quadruplex-probing technique—resonance light scattering (RLS)-based ratiometric recognition. To achieve the RLS probing of G-quadruplexes in the important physiological pH range of 7.4-6.0, four water soluble cationic porphyrin derivatives, including an unreported octa-cationic porphyrin, with large side arm substituents were synthesized and developed as RLS probes. These RLS probes were demonstrated to work well for ratiometric recognition of G-quadruplexes with high specificity against single- and double-stranded DNAs, including long double-stranded ones. The working mechanism was speculated to be based on the RLS signal changes caused by porphyrin protonation that was promoted by the end-stacking of porphyrins on Gquadruplexes. This work adds an important member in G-quadruplex probe family, thus providing a useful tool for studies on G-quadruplex-related events concerning G-quadruplex formation, destruction and changes in size, shape and aggregation. As a proofof-concept example of applications, the RLS probes were demonstrated to work well for label-free and sequence-specific sensing of microRNA. This work also provides a simple and useful way for the preparation of cationic porphyrins with high charges

    A Reversible Steganography Scheme of Secret Image Sharing Based on Cellular Automata and Least Significant Bits Construction

    Get PDF
    Secret image sharing schemes have been extensively studied by far. However, there are just a few schemes that can restore both the secret image and the cover image losslessly. These schemes have one or more defects in the following aspects: (1) high computation cost; (2) overflow issue existing when modulus operation is used to restore the cover image and the secret image; (3) part of the cover image being severely modified and the stego images having worse visual quality. In this paper, we combine the methods of least significant bits construction (LSBC) and dynamic embedding with one-dimensional cellular automata to propose a new lossless scheme which solves the above issues and can resist differential attack and support parallel computing. Experimental results also show that this scheme has the merit of big embedding capacity

    Nemonoxacin (Taigexyn<sup>®</sup>): A New Non-Fluorinated Quinolone

    Get PDF
    Nemonoxacin (Taigexyn®), a novel C-8-methoxy non-fluorinated quinolone, has been approved for use in community-acquired pneumonia (CAP) in Taiwan (2014) and mainland China (2016). The FDA granted nemonoxacin ‘qualified infectious disease product’ and ‘fast-track’ designations for CAP and acute bacterial skin and skin structure infection in December 2013. It possesses a broad spectrum of bactericidal activity against typical and atypical respiratory pathogens. In particular, nemonoxacin has activity against resistant Gram-positive cocci, including penicillin-resistant Streptococcus pneumoniae and methicillin-resistant Staphylococcus aureus. Oral nemonoxacin was compared with oral levofloxacin for efficacy and safety in three randomized, double-blinded, controlled Phase II–III clinical trials for the treatment of CAP. This article will review the microbiological profile of nemonoxacin against respiratory pathogens including S. pneumoniae and S. aureus, and microbiological outcome data from the three Phase II–III studies

    Conserved Extracellular Cysteines Differentially Regulate the Potentiation Produced by Zn2+ in Rat P2X4 Receptors

    Get PDF
    One feature of the amino acid sequence of P2X receptors identified from mammalian species, Xenopus laevis and zebrafish is the conservation of ten cysteines in the extracellular loop. Little information is available about the role of these conserved ectodomain cysteines in the function of P2X receptors. Here, we investigated the possibility that ten conserved cysteine residues in the extracellular loop of the rat P2X4 receptor may regulate zinc potentiation of the receptor using a series of individual cysteine to alanine point mutations and functional characterization of recombinant receptors expressed in Xenopus oocytes. For the C116A, C132A, C159A, C165A, C217A and C227A mutants, 10 µM zinc did not significantly affect the current activated by an EC40 concentration of ATP. By contrast, 5 µM zinc shifted the ATP concentration-response curve to the right in a parallel manner for both the C261A and C270A mutants and the magnitudes of those shifts were similar to that of the wildtype receptor. Interestingly, for the C126A and C149A mutants, 5 µM zinc potentiated ATP-activated current, but increased the maximal response to ATP by 90% and 81% respectively, without significantly changing the EC50 value of ATP. Thus, these results suggest that cysteines and disulfide bonds between cysteines are differentially involved in the potentiation of the rat P2X4 receptor by zinc

    Experiment, simulation and analysis on coupling hydrodynamic forces under key parameters for a spherical underwater exploration robot

    Get PDF
    As a novel underwater exploration robot, BYSQ-2 spherical robot uses the heavy pendulum to change the attitudes with the characteristics of small steering resistance and high compressive strength. However, the greater water resistance in the process of moving forward obstructs the rapid movement, because the robot has a spherical shell and only one propeller. The maximum speed was obtained only 0.6 m/s according to experimental tests and theoretical calculations. In order to improve the movement speed, the robot’s virtual assembly model was built to study the coupling hydrodynamic forces between the spherical shell and the propeller by CFD method. The coupling hydrodynamic forces were analyzed and summarized under different key structural parameters that include the pipe diameter and the shell diameter. Furthermore, in the conditions of different rotational speed, propeller thrust and water resistance of robot were simulated and calculated. According to the simulation results of the model with the appropriate structural parameters, it was demonstrated that the speed of the robot was improved obviously in the process of moving forward

    Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway

    Get PDF
    [[abstract]]Background: Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA) as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results: We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s). The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK), Akt and glycogen synthase kinase-3β (GSK-3β). Conclusion: We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s) of the etiologic agents. ? 2009 Huang et al; licensee BioMed Central Ltd
    corecore